求x/(1+e^(1/x)),x->0时的左右极限 要详解.

问题描述:

求x/(1+e^(1/x)),x->0时的左右极限 要详解.

左极限:
lim x/[1+e^(1/x)]
x→0-
=(0-)/[1+e^(1/0-]
=(0-)/[1+e^(-∞)]
=(0-)/[1+0]
=0
右极限:
lim x/[1+e^(1/x)]
x→0+
=(0+)/[1+e^(1/0+]
=(0+)/[1+∞]
=0
因为,左极限 = 右极限,
所以,在x=0处,极限存在.