已知实数a,b,x,y,满足不等式(a+b)(x+y)>2(ay+bx),求证(x-y)/(a-b)+(a-b)/(x-y)>=2
问题描述:
已知实数a,b,x,y,满足不等式(a+b)(x+y)>2(ay+bx),求证(x-y)/(a-b)+(a-b)/(x-y)>=2
答
∵ ax+ay+bx+by>2ay+2bx∴ ax-ay-bx+by>0∴ a(x-y)-b(x-y)>0∴ (a-b)(x-y)>0∴ a-b和x-y同号,设a-b=n,x-y=m,则转化为已知 mn>0,证明:m/n+n/m≥2① m>0 n>0 则m/n+n/m≥2根号(m/n×n/m)=2② m<0 n<0 则m/n...