2/1+(3/1+3/2)+(4/1+4/2+4/30+(5/1+5/2+5/3+5/4)+...(50/1+50/2+50/3+...50/49)等于多少?
问题描述:
2/1+(3/1+3/2)+(4/1+4/2+4/30+(5/1+5/2+5/3+5/4)+...(50/1+50/2+50/3+...50/49)等于多少?
答
n/1+n/2+……+n/(n-1)
=n/[2/n(n-1)]
=2/(n-1)
所以原式=2/1+2/2+2/3+……+2/49
=2/(1+2+……+49)
=2/1225