求证:log以n为底(n+1)>log以(n+1)为底(n+2)
问题描述:
求证:log以n为底(n+1)>log以(n+1)为底(n+2)
答
证:logn(n+1)=ln(n+1)/ln(n)=1+ln[(n+1)/n]/ln(n)log(n+1)(n+2)=1+ln[(n+2)/(n+1)]/ln(n+1) ∵(n+1)/n>(n+2)/(n+1) ∴ln[(n+1)/n]>ln[(n+2)/(n+1)] 又ln(n)log(n+1)(n+2)