如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB,垂足为点E,AB=12cm,则△DEB的周长为______cm.

问题描述:

如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB,垂足为点E,AB=12cm,则△DEB的周长为______cm.

∵AD平分∠CAB,∠C=90°,DE⊥AB,
∴∠CAD=∠BAD,∠C=∠AED.
又∵AD=AD,
在△CAD和△EAD中

∠C=∠DEA
∠CAD=∠EAD
AD=AD

∴△CAD≌△EAD,
∴AC=AE,CD=DE.
∵AC=BC,
∴BC=AE.
∴△DEB的周长为DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=12cm.
答案解析:由题目的已知条件应用AAS易证△CAD≌△EAD.得到DE=CD,于是BD+DE=BC=AC=AE,则周长可利用对应边相等代换求解.
考试点:全等三角形的判定与性质.
知识点:本题考查了全等三角形的判定及性质;解决本题的关键是利用全等把所求的三角形的周长的各边整理到已知的线段上.