多变量条件概率公式

问题描述:

多变量条件概率公式
三个变量时P(W|S)=P(W|R,S)P(R|S)+P(W|~R,S)P(~R|S)公式的由来.
以及四个变量时.p(w|c)=p(w|R,s,c)p(R,s|c)+P(W|~R,S,C)P(~R,S|C)+P(W|R,S,C)P(R,S|C)+P(W|~R,S,C)P(~R,S|C)这个公式的由来.

P(W|S)=P(W,S)/P(S)
P(W|R,S)P(R|S)=[P(W,R,S)/P(R,S)][P(R,S)/P(S)]=P(W,R,S)/P(S)
P(W|~R,S)P(~R|S)=[P(W,~R,S)/P(~R,S)][P(~R,S)/P(S)]=P(W,~R,S)/P(S)
同时:P(W,R,S)/P(S)+P(W,~R,S)/P(S)=[P(W,R,S)+P(W,~R,S)]/P(S)=P(W,S)/P(S)
所以P(W|S)=P(W|R,S)P(R|S)+P(W|~R,S)P(~R|S)
四个变量时用相同方法证明,你自己证明吧.