设f(x,y)具一阶连续偏导数,且满足x•(df/dx)+y•(df/dy)=0.证明f((x,y)在极坐标下与向量r无关
问题描述:
设f(x,y)具一阶连续偏导数,且满足x•(df/dx)+y•(df/dy)=0.证明f((x,y)在极坐标下与向量r无关
答
做变化x=rcost ,y=rsint
df/dx=(1/cost)df/dr-[1/(rsint)]df/dt
df/dy=(1/sint)df/dr-[1/(rcost)]df/dt
x(df/dx)+y(df/dy)=2rdf/dr=0
df/dr=0
f和r无关