在△ABC中,D为AB的中点,分别延长CA,CB到点E,F,使DE=DF;过E,F分别作CA,CB的垂线,相交于P.求证:∠PAE=∠PBF.

问题描述:

在△ABC中,D为AB的中点,分别延长CA,CB到点E,F,使DE=DF;过E,F分别作CA,CB的垂线,相交于P.求证:∠PAE=∠PBF.

如图,分别取AP、BP的中点M、N,并连接EM、DM、FN、DN.根据三角形中位线定理可得:DM∥BP,DM=12BP=BN,DN∥AP,DN=12AP=AM,∴∠AMD=∠APB=∠BND,∵M、N分别为直角三角形AEP、BFP斜边的中点,∴EM=AM=DN,FN=BN=D...
答案解析:取AP、BP的中点,并连接EM、DM、FN、DN,根据直角三角形斜边中线性质易证得△DEM≌△FDN,即可得各角的关系.即可证得结论.
考试点:全等三角形的判定与性质.
知识点:本题考查了全等三角形的判定及性质,涉及到直角三角形、等腰三角形的性质等知识点,是一道难度较大的综合题型,正确作出辅助线是解题的关键.