已知空间四边形ABCD中,AO1⊥平面BCD,并且O1为△BCD垂心,BO2⊥平面ACD于O2

问题描述:

已知空间四边形ABCD中,AO1⊥平面BCD,并且O1为△BCD垂心,BO2⊥平面ACD于O2
求证 O2是△ACD的垂心

丿BUG ,
证明:连结BO1,AO2,
∵AO1⊥平面BCD,O1为ΔBCD的垂心,
∴BO1⊥CD,由三垂线定理得AB⊥CD.
又BO2⊥平面ACD,由三垂线逆定理得AO2⊥CD.
同理连结DO1,CO2可证BC⊥AD,即CO2⊥AD.
∴O2是ΔACD垂心.