已知loga和logb是关于x的方程x^2-x+m=0的两根,而关于x的方程x^2-(lga)x-(1+lga)=0有两个相等的实数跟,求

问题描述:

已知loga和logb是关于x的方程x^2-x+m=0的两根,而关于x的方程x^2-(lga)x-(1+lga)=0有两个相等的实数跟,求
求实数a b和m的值

关于x的方程x^2-(lga)x-(1+lga)=0有两个相等的实数跟∴lg²a+4(lga+1)=0(lga+2)²=0lga=-2a=1/100lga是方程的一根∴(-2)²-(-2)+m=0m=-6lga+lgb=1 根与系数关系lgb=3b=1000∴a=1/100 b=1000 m=-6...