证明:(sin2分之α+cos2分之α)^2=1+sinα

问题描述:

证明:(sin2分之α+cos2分之α)^2=1+sinα

[sin(α/2)+cos(α/2)]^2
=[sin(α/2)]^2 + cos(α/2)]^2 +2*sin(α/2)cos(α/2)
=1+sinα
最简单的同角三角函数关系式、二倍角公式
回去好好看书啊