求过两圆x^2+y^2+4x+y=-1,x^2+Y^2+2x+2y+1=0的交点的圆中面积最小的圆的方程

问题描述:

求过两圆x^2+y^2+4x+y=-1,x^2+Y^2+2x+2y+1=0的交点的圆中面积最小的圆的方程

圆系方程做的话,x^2+y^2+4x+y+1+b(x^2+y^2+2x+2y+1)=0的几何意义就是过这两个交点的圆系(即满足条件的所有圆的集合),然后把这个式子整理成圆的标准方程形式,(x+m)^2+(y+n)^2=r^2,保证2r=已知两点距离,解出r,就知道b了,从而圆系方程确定唯一解.
希望对你能有所帮助.什么圆系方程