设a,b,c为不全相等的实数,x=a^2-bc,y=b^2-ac,z=c^2-ab,证明x,y,z至少有一大于0
问题描述:
设a,b,c为不全相等的实数,x=a^2-bc,y=b^2-ac,z=c^2-ab,证明x,y,z至少有一大于0
答
设a、b、c为不全相等的实数,x=a²-bc,y=b²-ac,z=c²-ab,证明:x、y、z至少有一大于0.
证明:用反证法证明,
假设x、y、z都小于0,那么必有:
x+y+z0
与①相矛盾.故原命题成立.