正方形ABCD对角线交与点O,过点O做两条相互垂直的直线交正方形四边于E、F、G、H四点,求证四边形EFGH是一个正方形.

问题描述:

正方形ABCD对角线交与点O,过点O做两条相互垂直的直线交正方形四边于E、F、G、H四点,求证四边形EFGH是一个正方形.

证明:连接OC,OB
则∠BOC=90°
∵∠FOG=90°
∴∠COF=∠BOG
∵OB=OC,∠OBG=∠OCF=45°
∴△OBG≌△OCF
∴OG=OF
同理OG=OF=OE=OH
又∵FH⊥EG
∴四边形EFGH是正方形