求f(x)=log1/2(x^2+2x-3)的单调区间

问题描述:

求f(x)=log1/2(x^2+2x-3)的单调区间

首先定义域x^2+2x-3>0(x-1)(x+3)>0x∈(负无穷,-1)∪(1,正无穷)易知外函数为减函数所以当x^2+2x-3递增时f(x)递减当x^2+2x-3递减时f(x)递增设g(x)=x^2+2x-3则g‘(x)=2x+2令g'(x)>=0x>=-1所以(1,正无穷)为f(x)的减区间...(x-1)(x+3)>0x∈(负无穷,-1)∪(1,正无穷)这里错了吧,不是应该是x∈(负无穷,-3)∪(1,正无穷)吗?嗯 笔误了 已修正解:首先定义域x^2+2x-3>0(x-1)(x+3)>0x∈(负无穷,-3)∪(1,正无穷)易知外函数为减函数所以当x^2+2x-3递增时f(x)递减当x^2+2x-3递减时f(x)递增设g(x)=x^2+2x-3则g‘(x)=2x+2令g'(x)>=0x>=-1所以(1,正无穷)为f(x)的减区间令g'(x)