若a是自然数,求证:a(a+1)(a+2)(a+3)+1必为完全平方数

问题描述:

若a是自然数,求证:a(a+1)(a+2)(a+3)+1必为完全平方数

a(a+1)(a+2)(a+3)+1
=a(a+3)(a+1)(a+2)+1
=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a)^2+2(a^2+3a)+1
=(a^2+3a+1)^2
a(a+1)(a+2)(a+3)+1必为完全平方数

a(a+1)(a+2)(a+3)+1
=a(a+3)(a+1)(a+2)+1
=(a^2+3a)(a^2+3a+2)+1 把a^2+3a看成一整体
=(a^2+3a)^2+2(a^2+3a)+1
=(a+3a+1)^2 得证

显然有:a(a+1)(a+2)(a+3)+1=(a^2+3a+2)(a^2+3a)+1
=(a^2+3a+1)(a^2+3a+1)=(a^2+3a+1)^2