设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂2z/∂(x^2)

问题描述:

设由方程xy+yz+xz=1,确定函数z=f(x,y),求∂2z/∂(x^2)

y+y∂z/∂x+z+x∂z/∂x=0
∂z/∂x=-(y+z)/(x+y)
∂2z/∂x2=【∂(∂z/∂x)】/∂x=【∂( -(y+z)/(x+y))】/∂x=[-∂z/∂x(x+y)+(y+z)]/(x+y)^2 =2(y+z)/(x+y)^2