在三角形ABc中,AB二Ac,点D,E,F分别在边AB,Bc,Ac上,且BD二cE,角DEF=角B,图中是否存在和三角形BDE全等的三角形?

问题描述:

在三角形ABc中,AB二Ac,点D,E,F分别在边AB,Bc,Ac上,且BD二cE,角DEF=角B,图中是否存在和三角形BDE全等的三角形?

答:
BD=CE,∠B=∠DE‖BC
所以:∠B=∠DEF=∠EFC
所以:BD‖EF
所以:四边形BFED是平行四边形
所以:△BFE≌△BDE
因为:∠B=∠C
又因为:∠DEC=∠DEF+∠FEC
又有∠DEC=∠B+∠BDE,∠DEF=∠B
所以∠FEC=∠BDE.有∠B=∠C,BD=CE,
∠FEC=∠BDE,所以△BDE全等于△CEF,(角边角)
请点击下面的【选为满意回答】按钮.
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢!