已知实数a、b、c满足a+b+c=0,a^2+b^2+c^2=0.1,求a^4+b^4+c^4=?
问题描述:
已知实数a、b、c满足a+b+c=0,a^2+b^2+c^2=0.1,求a^4+b^4+c^4=?
答
先对a+b+c=0两边平方,从而得出2ab+2ac+2bc=-0.1,再对2ab+2ac+2bc=-0.1,两边平方,从而得出a^2b^2+a^2c^2+b^2c^2=0.0025和(a^2+b^2+c^2)2=0.01,即可得出a^4+b^4+c^4.∵a+b+c=0,∴(a+b+c)2=a^2+b^2+c62+2ab+2ac+2b...