高一三角函数证明题

问题描述:

高一三角函数证明题
已知sin^2 (α)/sin^2( β)+cos^2(θ)=1
求证tan^2 (α)=sin^2(θ)tan^2(β)
是这样的
已知【sin^2 (α)】/【sin^2(β)】+cos^2(α)cos^2(θ)=1
求证tan^2 (α)=sin^2(θ)tan^2(β)

证明:∵cos2θ=(1-sin2α/sin2β)/cos2α=1/cos2α-tan2α/sin2β
∴sin2θ=1-cos2θ=1-1/cos2α+tan2α/sin2β=-tan2α+tan2α/sin2β=tan2α(-1+1/sin2β)=tan2αcot2β
∴sin^2(θ)tan^2(β)=tan2αcot2β×tan2β=tan2α