已知函数f(x)=ax-1/ax+1(a>1). (1) 判断函数f(x)的奇偶性; (2)求 f(x)的值域. (3)证明f(x)在(-∞,+
问题描述:
已知函数f(x)=ax-1/ax+1(a>1). (1) 判断函数f(x)的奇偶性; (2)求 f(x)的值域. (3)证明f(x)在(-∞,+
已知函数f(x)=ax-1/ax+1(a>1).
(1)判断函数f(x)的奇偶性;
(2)求f(x)的值域.
(3)证明f(x)在(-∞,+∞)上是增函数.
答
f(x)=(a^x-1)/(a^x+1)(a>1).
(1)判断f(x)的奇偶性.
因为函数f(x)的定义域为(-∞,+∞),且
f(-x)=(a^(-x)-1)/(a^(-x)+1)=(1-a^x)/(1+a^x)
=-(a^x-1)/(a^x+1)=-f(x),
所以,f(x)是奇函数.
(2)求f(x)的值域.
因为0