已知函数f(x)是二次函数,且满足f(0)=0,且f(x+1)=f(x)+x+1,求y=f(x2-2)的值域.
问题描述:
已知函数f(x)是二次函数,且满足f(0)=0,且f(x+1)=f(x)+x+1,求y=f(x2-2)的值域.
答
设函数f(x)=ax2+bx+c∵f(0)=0,所以c=0,即f(x)=ax2+bx,f(x+1)=a(x+1)2+b(x+1)=ax2+2ax+a+bx+b=f(x)+x+1=ax2+bx+x+1,消去相同项得2ax+a+b=x+1即2a=1,a+b=1,解得a=b=12,∴f(x)=12x2+12x=12(x+12...