已知tana 3 求下列各式的值:(1)2sin²a-sinacosa+1;
问题描述:
已知tana 3 求下列各式的值:(1)2sin²a-sinacosa+1;
(2)(sin²a-2sinacosa-cos²a)/(4cos²a-3sin²a)
答
(1)2sin²a-sinacosa+1
=2sin²a-sinacosa+sin²a+cos²a
=3sin²a-sinacosa+cos²a
=(3sin²a-sinacosa+cos²a)/(sin²a+cos²a) 1=sin²a+cos²a
=(3tan²a-tana+1)/(tan²a+1) 分子分母同时除以cos²a
=(27-3+1)/(9+1)
=5/2
(2)(sin²a-2sinacosa-cos²a)/(4cos²a-3sin²a)
=(tan²a-2tana-1)/(4-3tan²a) 分子分母同时除以cos²a
=(9-6-1)/(4-27)
=-2/23