求解一道运筹学的线性规划问题模型的建立

问题描述:

求解一道运筹学的线性规划问题模型的建立
某农场有100公顷土地及15000元资金可用于发展生产.农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1元/人日,秋冬季收入为1.8元/人日.该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡.种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元.养奶牛时每头需拨出1.5公顷土地种饲草,并占用人工秋冬季100人日,春夏季为50人日,年净收入400元/每头奶牛.养鸡时不占用土地,需人工为每只鸡秋冬季需0.6人日,春夏季为0.3人日,年净收入为2元/每只鸡.农场现有鸡舍允许最多养3000只鸡,牛栏允许最多养32头奶牛.三种作物每年需要的人工及收入情况如表所示.试决定该农场的经营方案,使年净收入为最大.
大 豆 玉 米 麦 子
秋冬季需人日数 20 35 10
春夏季需人日数 50 75 40
年净收入(元/公顷) 175 300 120

设大豆、玉米、麦子各所需土地x1、x2、x3(公顷),牛和鸡各饲养x4和x5(只),根据题意可以列出下表:

  见下图点击可以放大.

目标函数 Max z=175*x1+300*x2+120*x3+400*x4+2*x5;

满足条件 x1+x2+x3+1.5*x4<=100;

400*x4+3*x5<=15000;

20*x1+35*x2+10*x3+100*x4+0.6*x5<=3500;

50*x1+75*x2+40*x3+50*x4+0.3*x5<=4000;

x4<=32;

x5<=3000;

x1,……,x5>=0 

Lingo程序:

max=175*x1+300*x2+120*x3+400*x4+2*x5;

x1+x2+x3+1.5*x4<=100;

400*x4+3*x5<=15000;

20*x1+35*x2+10*x3+100*x4+0.6*x5<=3500;

50*x1+75*x2+40*x3+50*x4+0.3*x5<=4000;

x4<=32;

x5<=3000;

@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x5);

End

结果如下:

  Global optimal solution found at iteration:            29

  Objective value:                                 20216.00

                       Variable           Value        Reduced Cost

                             X1        0.000000           -175.0000

                             X2        39.00000           -300.0000

                             X3        0.000000           -120.0000

                             X4        21.00000           -400.0000

                             X5        58.00000           -2.000000

                            Row    Slack or Surplus      Dual Price

                              1        20216.00            1.000000

                              2        29.50000            0.000000

                              3        6426.000            0.000000

                              4       0.2000000            0.000000

                              5        7.600000            0.000000

                              6        11.00000            0.000000

                              7        2942.000            0.000000

综合程序计算结果可以得:

玉米耕种了39公顷,奶牛养了21头,鸡养了58只,并不种植大豆和麦子.由此可以计算出春夏两季多余的劳动力为7人,经计算他们的年净收入为 2690;而秋冬两季并没有多余劳动力.所以该农场的年净收入为 22906.