三角形ABC中,(向量CA+向量CB)向量AB=2/5向量AB的模的平方,求tanA/tanB=?
问题描述:
三角形ABC中,(向量CA+向量CB)向量AB=2/5向量AB的模的平方,求tanA/tanB=?
答
(向量CA+向量CB)向量AB=3/5(向量AB的模的平方),
(向量CA+向量CB)(向量CB-向量CA)=3/5(向量AB的模的平方),
|CB|²-|CA|²=3/5|AB|²,即a²-b²=3/5c²
∵a²=b²+3/5c²=b²+c²-2bccosA,
∴cosA=c/(5b)=sinC/(5sinB),即cosAsinB=sinC/5,
∵b²=a²-3/5c²=a²+c²-2accosB,
∴cosB=4c/(5a)=4sinC/(5sinA),即sinAcosB=4sinC/5,
故tanA/tanB=sinAcosB/(sinBcosA)=4.