已知三角形ABC中三个内角ABC满足A+C=2B,求cos²A+cos²C的取值范围

问题描述:

已知三角形ABC中三个内角ABC满足A+C=2B,求cos²A+cos²C的取值范围

三角形内角和180°,即:A+B+C=180°
又因为:A+C=2B
所以解得:B=60°,A+C=120°,C=120°-A
cos2A=2cos²A-1,cos2C=2cos²C-1
所以:cos²A=(cos2A+1)/2
cos²C=(cos2C+1)/2
所以:cos²A+cos²C=(cos2A+1)/2+(cos2C+1)/2
=(cos2A+cos2C)/2+1
={2cos[(2A+2C)/2]cos[(2A-2C)/2]}/2+1
=cos(A+C)cos(A-C)+1
=1-[cos(A-C)]/2
=1-[cos(A-120°+A)]/2
=1-cos(2A-120°)/2
0