阶乘.求证:1/(1+1)!+2/(2+1)!+…+n/(n+1)=1-1/(n+1)!
问题描述:
阶乘.求证:1/(1+1)!+2/(2+1)!+…+n/(n+1)=1-1/(n+1)!
求证:1/(1+1)!+2/(2+1)!+…+n/(n+1)=1-1/(n+1)!
答
用数学归纳法.
(1)当n=1时,1/(1+1)!=1/2=1-1/(1+1)!
(2)假设当n=k时等式成立,即1/(1+1)!+2/(2+1)!+…+k/(k+1)!=1-1/(k+1)!
那么,当n=k+1时,
1/(1+1)!+2/(2+1)!+…+k(k+1)!+(k+1)/(k+2)!
=1-1/(k+1)!+(k+1)/(k+2)!
=1-(k+2)/(k+2)!+(k+1)/(k+2)!
=1-1/(k+2)!
所以当n=k+1时,原等式依然成立.
综合(1)(2)可得,原等式成立.