用数学归纳法证明:1^3+2^3+3^3……+n^3=[(1/2)n(n+1)]^2 我只想知道从n=k+1,之后的步骤.

问题描述:

用数学归纳法证明:1^3+2^3+3^3……+n^3=[(1/2)n(n+1)]^2 我只想知道从n=k+1,之后的步骤.

n=k+1时,1^3+2^3+3^3……+k^3+(k+1)^3=[(1/2)k(k+1)]^2+(k+1)^3=(1/4)k^2(k+1)^2+(k+1)(k+1)^2=(1/4)(k^2+4k+4)(k+1)^2 ...