(1)操作:如图1所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为
(1)操作:如图1所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.
(2)尝试:如图2、3,将一块半径足够长的扇形纸板的圆心角放在边长为a的正三角形或边长为a的正五边形的中心点处,并将纸板绕O旋转.当扇形纸板的圆心角为 ___ 时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为 ___ 时,正五边形的边长被纸板覆盖部分的总长度也为定值a.
(3)探究:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为 ___ 时,正n边形的边被纸板覆盖部分的总长度为定值a.
(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD分别交于点M、N,
连结OA、OD.
∵四边形ABCD是正方形
∴OA=OD,∠AOD=90°,∠MAO=∠NDO=45°,
又∵∠MON=90°,
∴∠AOM=∠DON,
在△AMO与△DNO中,
,
∠MAO=∠NDO OA=OD ∠AOM=∠DON
∴△AMO≌△DNO(ASA),
∴AM=DN,
∴AM+AN=DN+AN=AD=a.
特别地,当点M与点A(点B)重合时,点N必与点D(点A)重合,
此时AM+AN仍为定值a.
故总有正方形的边被纸板覆盖部分的总长度为定值a.
(2)在等边△ABC中,连接OB,OC,当△OCE≌△OBD时,有OD+OE+CD+CE+OB+OC+BC为定值.此时∠DOE=∠BOC=360°÷3=120°.
同理在正五边形中,∠FOG=∠DOE=360°÷5=72°.
(3)由(1)、(2)可知,圆心角为
是定值.360° n
故答案为:120°;72°;
.360° n