sinx+siny=1/3,求cosx+cosy的取值范围
问题描述:
sinx+siny=1/3,求cosx+cosy的取值范围
只知道正确答案为-√35/3,√35/3
答
(sinx+siny)^2+(cosx+cosy)^2
=2+2(sinxsiny+cosxcosy)
=2+2cos(x-y)
2cos(x-y)值域[-2,2]
(sinx+siny)^2=1/9
(cosx+cosy)^2属于[-1/9,35/9]且(cosx+cosy)^2>=0得解