求由方程cos(xy)=x²y²所确定的函数y的微分

问题描述:

求由方程cos(xy)=x²y²所确定的函数y的微分

两边对x求导:
-(y+xy')sin(xy)=2xy^2+2x^2yy'
解得:y'=-[ysin(xy)+2xy^2]/[2x^2y+xsin(xy)]
所以dy=-[ysin(xy)+2xy^2]/[2x^2y+xsin(xy)]dx可是答案是dy=(-y/x)dx哦,是喔,可以继续化简:
y'=-[ysin(xy)+2xy^2]/[2x^2y+xsin(xy)]
=-y[sin(xy)+2xy]/x[2xy+sin(xy)]
=-y/x
故答案是对的