若正数a,b满足a+b=1,则a/a+1+b/b+1的最大值是_.
问题描述:
若正数a,b满足a+b=1,则
+a a+1
的最大值是______. b b+1
答
∵正数a,b满足a+b=1,
∴
+a a+1
=b b+1
=a(b+1)+b(a+1) (a+1)(b+1)
2ab+a+b ab+a+b+1
=
=2ab+1 ab+2
=2-2(ab+2)−3 ab+2
≤2−3 ab+2
=2−3 (
)2+2a+b 2
=3
+21 4
.当且仅当a=b=2 3
时取等号.1 2
∴
+a a+1
的最大值是b b+1
.2 3
故答案为:
.2 3