若正数a,b满足a+b=1,则a/a+1+b/b+1的最大值是_.

问题描述:

若正数a,b满足a+b=1,则

a
a+1
+
b
b+1
的最大值是______.

∵正数a,b满足a+b=1,

a
a+1
+
b
b+1
=
a(b+1)+b(a+1)
(a+1)(b+1)
=
2ab+a+b
ab+a+b+1

=
2ab+1
ab+2
=
2(ab+2)−3
ab+2
=2-
3
ab+2
≤2−
3
(
a+b
2
)2+2
=2−
3
1
4
+2
=
2
3
.当且仅当a=b=
1
2
时取等号.
a
a+1
+
b
b+1
的最大值是
2
3

故答案为:
2
3