e2=(1+1/2)^2,……,en=(1+1/n)^n.求证e(n)小于e(n+1).

问题描述:

e2=(1+1/2)^2,……,en=(1+1/n)^n.求证e(n)小于e(n+1).

证明:
e(n)=(1+1/n)^n=1*(1+1/n)*(1+1/n)……*(1+1/n),(n项[1+1/n]相乘,加补乘的1,共有n+1项)
利用均值不等式有:
1+(1+1/n)+(1+1/n)……+(1+1/n)>(n+1)*(1*(1+1/n)*(1+1/n)……*(1+1/n))^(1/(n+1)),(因为对任意n,1≠1+1/n,所以不会取等号)
整理得:
e(n)<{[1+(1+1/n)+(1+1/n)……+(1+1/n)]/(n+1)}^(n+1)
={[1+n*(1+1/n)]/(n+1)}^(n+1)
=[(n+2)/(n+1)]^(n+1)
=[1+1/(n+1)]^(n+1)
=e(n+1)