用数学归纳发证明,凸n边形对角线条数:f(n)=二分之一n(n-3),(n大于等于3,
问题描述:
用数学归纳发证明,凸n边形对角线条数:f(n)=二分之一n(n-3),(n大于等于3,
答
当n=3时 是三角形;f(3)=0.三角形是没有对角线 所以成立 设当是n的时候 成立关系 f(n)=n(n-3)/2 当是n+1时 ,比n的时候多一条边,就比n的时候增加了一个顶点.一个顶点与n+1条边共有n+1-2=n-1条对角线.(因为他旁边2个点与他连接的不能算对角线所以要减2)所以要比n增加了n-2条对角线.f(n+1)=f(n)+n-1=n(n-3)/2+n-1=(n+1)(n-2)/2 刚好满足给出的方程.所以这个假设是成立的.