化简cosα*根号(1-sinα)/(1+sinα)+sinα*根号(1-cosα)/(1+cosα)

问题描述:

化简cosα*根号(1-sinα)/(1+sinα)+sinα*根号(1-cosα)/(1+cosα)

cosα*根号[(1-sinα)/(1+sinα)]+sinα*根号[(1-cosα)/(1+cosα)]
=cosα*根号[(1-sinα)^2/(1-sin^2α)]+sinα*根号[(1-cosα)^2/(1-cos^2α)]
=cosα*(1-sinα)/cosα+sinα*(1-cosα)/sinα
=(1-sinα)+(1-cosα)
=2-sinα-cosα