如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=2. (1)求直线D1B与平面ABCD所成角的大小; (2)求证:AC⊥平面BB1D1D.

问题描述:

如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=

2


(1)求直线D1B与平面ABCD所成角的大小;
(2)求证:AC⊥平面BB1D1D.

(1)∵D1D⊥平面ABCD,BD是D1B在底面ABCD上的射影,
∴∠D1BD是直线D1B与平面ABCD所成的角,
在直角三角形D1BD中,BD=

2
,D1D=
2

则tan∠D1BD=
D1D
BD
=1,
∴∠D1BD=45°,
即直线D1B与平面ABCD所成角的大小为45°;
(2)证明:∵ABCD为正方形,∴AC⊥BD,
∵D1D⊥平面ABCD,∴D1D⊥AC,
又BD∩D1D=D,
∴AC⊥平面BB1D1D.