已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x(x∈R). (1)求函数f(x)的最大值及此时自变量x的取值集合; (2)求函数f(x)的单调递增区间; (3)求使f(x)≥2的x的取值范围.
问题描述:
已知函数f(x)=sin(2x+
)+sin(2x-π 6
)+2cos2x(x∈R).π 6
(1)求函数f(x)的最大值及此时自变量x的取值集合;
(2)求函数f(x)的单调递增区间;
(3)求使f(x)≥2的x的取值范围.
答
f(x)=sin2xcos
+cos2xsinπ 6
+sin2xcosπ 6
-cos2xsinπ 6
+1+cos2x=2sin2xcosπ 6
+cos2x+1=π 6
sin2x+cos2x+1=2sin(2x+
3
)+1π 6
(1)f(x)取得最大值3,此时2x+
=π 6
+2kπ,即x=π 2
+kπ,k∈Zπ 6
故x的取值集合为{x|x=
+kπ,k∈Z}π 6
(2)由2x+
∈[-π 6
+2kπ,π 2
+2kπ],(k∈Z)得,x∈[-π 2
+kπ,π 3
+kπ],(k∈Z)π 6
故函数f(x)的单调递增区间为[-
+kπ,π 3
+kπ],(k∈Z)π 6
(3)f(x)≥2⇔2sin(2x+
)+1≥2⇔sin(2x+π 6
)≥π 6
⇔1 2
+2kπ≤2x+π 6
≤π 6
+2kπ⇔kπ≤x≤5π 6
+kπ,(k∈Z)π 3
故f(x)≥2的x的取值范围是[kπ,
+kπ],(k∈Z)π 3