定义新的运算a*b=axb-(a+b).(1)求6*3.(2)求12*(5*7).(3)*有交换律或结合律吗?(4)如果3*(6*x)=25,求x
定义新的运算a*b=axb-(a+b).
(1)求6*3.
(2)求12*(5*7).
(3)*有交换律或结合律吗?
(4)如果3*(6*x)=25,求x
a*b=axb-(a+b)
(1)6*3=6x3-(6+3)=9
(2)12*(5*7)=12*23=276-35=241
(3)a*b=axb-(a+b)=b*a 交换律
a*b*c=[axb-(a+b)]*c=axbxc-(a+b)xc-[axb-(a+b)+c]
a*(b*c)=a*[bxc-(b+c)]=axbxc-ax(b+c)-[a+bxc-(b+c)]≠a*b*c
所以结合律不成立
(4)3*(6*x)=25
令y=6*x
所以3*y=25
3y-3-y=25
y=14
6*x=14
6x-6-x=14
x=4
(1)6*3=6*3-(6+3)=18-9=9
(2)12*(5*7)=12*[5*7-(5+7)]=12*(23)=12*23-(12+23)=276-35=241
(3)b*a=b*a-(b+a)=a*b-(a+b)=a*b,所以:具备交换律
(4)3*(6*x)=25,则:3*(6x-(6+x)=3*(5x-6)=3(5x-6)-(3+5x-6)=15x-18+3-5x=10x-15=25
解得:x=4
∵a*b=a×b-(a+b).(1)∴6*3=6×3-(6+3)=9.\x0d(2)求12*(5*7)=12*[5×7-(5+7)]=12*22=[12×22-(12+22)]=230(3)∵a*b=a×b-(a+b),b*a=b×a-(b+a)∴a*b=b*a∵(a*b)*c=[a×b-(a+b)]×c-[a×b-(a...
6*3=6×3-(6+3)=9
12*(5*7)=12×(5*7)-[12+(5*7)]=12×[5×7-(5+7)]-[12+5×7-(5+7)]=241
3*(6*x)=25
解得3(6*x)-(3+6*x)=25
10x-15=25
x=4