如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.

问题描述:

如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.

证明:∵∠C=90°,∠A=30°,
∴∠ABC=90°-30°=60°,
∵BD平分∠ABC,
∴∠ABD=

1
2
∠ABC=
1
2
×60°=30°,
∴∠A=∠ABD,
∴DA=DB,
∴点D在AB的垂直平分线上.