已知sinb=cos(a+b)sina 证明 tanb=tana/1+2tan^2a
问题描述:
已知sinb=cos(a+b)sina 证明 tanb=tana/1+2tan^2a
答
sinb=cos(a+b)sina
sin(a+b-a)=cos(a+b)sina
sin(a+b)cosa-sinacos(a+b)=cos(a+b)sina
sin(a+b)cosa=2sinacos(a+b)
tan(a+b)=2tana
tanb
=tan(a+b-a)
=(tan(a+b)-tana)/(1+tan(a+b)tana)
=(2tana-tana)/(1+2tanatana)
=tana/(1+2tan²a)