已知数列{an}的通项公式an=1+2+…+nn,bn=1/anan+1,则数列{bn}的前n项和为_.

问题描述:

已知数列{an}的通项公式an

1+2+…+n
n
bn
1
anan+1
,则数列{bn}的前n项和为______.

an

1+2+…+n
n
=
n(n+1)
2n
=
n+1
2
,∴bn
1
anan+1
=
4
(n+1)(n+2)
=4(
1
n+1
1
n+2
)

∴数列{bn}的前n项和=4[(
1
2
1
3
)+(
1
3
1
4
)+…+(
1
n+1
1
n+2
)]

=4(
1
2
1
n+2
)
=
2n
n+2

故答案为
2n
n+2