已知两条直角边的和等于10cm,求这个直角三角形的面积最大时,两条直角边的长及最大面积分别是多少?

问题描述:

已知两条直角边的和等于10cm,求这个直角三角形的面积最大时,两条直角边的长及最大面积分别是多少?
这应该是要用到均值定理的

设两直角边为a和b
a+b=10
a+b≥2√ab
2√ab≤10
√ab≤5
ab≤25
当且仅当a=b=5时ab最大,为25
S=ab/2=25/2为什么我算出来是6.25设直角的一条边是x,另一条就是(10-x)(10-x)x/2≤(((10-x)/2+x/2)/2)²(10-x)x/2≤6.25你的平方写错地方了(10-X)X≤[(10-X)²+x²]/2(10-X)X/2≤[(10-X)²+x²]/4一样的当且仅当(10-X)=X(10-X)X/2≤50/4=25/2第二排,为什么要除以2,看不懂,能解释下吗?谢谢不是算面积么?直角边乘积除以2你说平方写错地方了,可是,书上的公式是这样的ab≤[(a+b)/2]²,那是我看错你的写法了你出错的地方在这里:原来有(10-X)X≤[(10-X)²+X²]/2你把左边改成(10-X)X/2,右边应该同时除以2,为{[(10-X)²+X²]/2}/2你改成把2除到平方里去了,相当于除以4谢谢,现在我懂了,真的懂了