设椭圆x2/a2+y2/b2=1(a>b>0)的离心率为e=1/2,右焦点F(c,0),方程a

问题描述:

设椭圆x2/a2+y2/b2=1(a>b>0)的离心率为e=1/2,右焦点F(c,0),方程a

A

e=c/a=1/2 c=1/2*a b^2=a^2-c^2=3/4*a^2
x1+x2=-b/a=-(根号3)/2
x1x2=-c/a=-1/2
x1^2+x2^2=(x1+x2)^2-2*x1*x2=3/4+1因此 在圆内 选A