已知椭圆C:x2/a2+y2/b2=1的左右焦点为F1 F2,离心率为e,直线l:y=ex+a与x轴y轴分别交于点A,B,M是直线l已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点为F1F2,离心率为e,直线l:y=ex+a与x轴y轴分别交与点A,B,M是直线与椭圆C的以个公共点,P是点F1关于直线的对称点,设AM向量=rAB向量,(1)证明:r=1-e^2;(2)若r=3/4,三角形PF1F2的周长为6;写出椭圆C的方程

问题描述:

已知椭圆C:x2/a2+y2/b2=1的左右焦点为F1 F2,离心率为e,直线l:y=ex+a与x轴y轴分别交于点A,B,M是直线l
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点为F1F2,离心率为e,直线l:y=ex+a与x轴y轴分别交与点A,B,M是直线与椭圆C的以个公共点,P是点F1关于直线的对称点,设AM向量=rAB向量,(1)证明:r=1-e^2;(2)若r=3/4,三角形PF1F2的周长为6;写出椭圆C的方程

1)因为:直线l:y=ex+a与x轴,y轴分别交于A,B两点,即:A,B点坐标是:A(-a/e,0),B(0.a),
设:M点坐标是:M(x,y)
y=ex+a------------------------------------------(1)
x^2/a^2+y^2/b^2=1-------------------------------(2)
(1),(2)得:
x=-c,y=b^2/a
即:M(-c,b^2/a)
向量AM=Q倍的 向量AB
==>[(-c+a/e),(b^2/a)]=Q[a/e,a]
==>(-c+a/e)=Qa/e--------------------------------(3)
==>(b^2/a)=aQ-----------------------------------(4)
(3),(4)得:Q=1-e^2
(2)要使得 三角形PF1F2是等腰三角形,即要PF1=F1F2
1/2PF1=c,【PF1F2是钝角】
1/2PF1=|-ec+a|/√(1+e^2)=c
==>|b^2/a|/√(1+e^2)=c
==>(1-e^2)/√(1+e^2)=e
==>e^2=1/3
因为:Q=1-e^2
==>Q=1-1/3=2/3
即:当:Q=2/3时三角形PF1F2是等腰三角形。

(1),由题易求A、B的坐标为:A(-a/e,0),B(0,a).设M的坐标为(x,y),则:x^2/a^2+y^2/b^2=1,且 y=ex+a.向量AM、向量AB的坐标为:向量AM=(x+a/e,y),向量AB=(a/e,a),因为向量AM=r向量AB,所以 (x+a/e,y)=r(a/e,a)...