连续、导数都是以极限定义的,为什么函数在闭区间端点处可以连续、而不可导?

问题描述:

连续、导数都是以极限定义的,为什么函数在闭区间端点处可以连续、而不可导?

楼上几位说的都存在不同程度的问题.楼上说的在概念上有问题,例子也给举错了,y = |x| 在 (-1,0]上定义时,在x = 0处的左导数是存在的,就等于-1,是可导的,而右边的导数虽然没有定义,但是不能因此就认为在这点不可导.在...