如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE. (1)求证:∠DAE=∠DCE; (2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.
问题描述:
如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.
(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.
答
(1)证明:∵四边形ABCD是菱形,∴AD=CD,∠ADE=∠CDB;在△ADE和△CDE中,AD=CD∠ADE=∠CDBDE=DE∴△ADE≌△CDE,∴∠DAE=∠DCE.(2)判断FG=3EF.∵四边形ABCD是菱形,∴AD∥BC,∴∠DAE=∠G,由题意知:△AD...