当a>0时,函数f(x)=ax+x-2/x+1在(-1,+∞)是增函数,用反证法证明方程ax+x-2/x+1=0没有负数根.

问题描述:

当a>0时,函数f(x)=ax+

x-2
x+1
在(-1,+∞)是增函数,用反证法证明方程ax+
x-2
x+1
=0没有负数根.

证明:假设f(x)=0 有负根 x0,且 x0≠-1,即 f(x0)=0.
根据f(0)=1+

0-2
1+0
=-1,可得 f(x0)>f(0)①. 
若-1<x0<0,由函数f(x)=ax+
x-2
x+1
在(-1,+∞)是增函数,可得f(x0)<f(0)=-1,这与题目条件矛盾.
若x0<-1,则 ax0>0,x0-2<0,x0+1<0,∴f(x0)>0,这也与题目条件矛盾.
故假设不正确.∴方程 ax+
x-2
x+1
=0 没有负根.