高数夹逼定理具体题目怎么运用
高数夹逼定理具体题目怎么运用
我们老师讲的很笼统,概念不懂,有没有具体题目给个然后给个过程解说的,
求lim[1/(n³+1) + 4/(n³+4)+...+n²/(n³+n²)]
用夹逼定理
1/(n³+n²)+2²/(n³+n²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+1)+…+n²/(n³+1)
(1+2²+…+n²)/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤(1+2²+…n²)/(n³+n²)
n(n+1)(2n+1)/[6(n³+n²)]≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤n(n+1)(2n+2)/[6(n³+n²)]
limn(n+1)(2n+1)/[6(n³+n²)]=1/3
limn(n+1)(2n+2)/[6(n³+n²)]=1/3
所以lim1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)=1/3哪里复杂啊,你仔细看看,反正要用夹逼定理的都是这类似的题目把它改成二次的会不会简单些啊求lim