确定函数y=x^(1/3)*(1-x)^(2/3)的单调区间,和极值

问题描述:

确定函数y=x^(1/3)*(1-x)^(2/3)的单调区间,和极值

y=x^(1/3)*(1-x)^(2/3)=[x(1-x)^2]^(1/3)=[x^3-2x^2+x]^(1/3)y'=(1/3)(3x^2-4x+1)*(x^3-2x^2+x)^(-2/3)=(1/3)(3x^2-4x+1)*[(x^3-2x^2+x)^2]^(-1/3)[(x^3-2x^2+x)^2]^(-1/3)>=03x^2-4x+1=(3x-1)(x-1)x1 y'>0 单调递增...