已知函数fx=sin(2x+π/6)+2cosx^2-1 (1)求函数fx的单调递增区间 (2)

问题描述:

已知函数fx=sin(2x+π/6)+2cosx^2-1 (1)求函数fx的单调递增区间 (2)
已知函数fx=sin(2x+π/6)+2cosx^2-1
(1)求函数fx的单调递增区间

f(x)=sin(2x+π/6)+2cosx^2-1
=sin(2x+π/6)+cos2x
=√3/2*sin2x+1/2*cos2x+cos2x
= √3/2*sin2x+3/2*cos2x
=√3*(1/2*sin2x+√3/2*cos2x)
=√3sin(2x+π/3)
单调递增区域为:
-π/2+2kπ≤2x+π/3≤π/2+2kπ,k为整数
-5π/6+2kπ≤2x≤π/6+2kπ,k为整数
-5π/12+kπ≤x≤π/12+kπ,k为整数
则函数f(x)的单调增区间为:[-5π/12+kπ,π/12+kπ],k为整数(2)在三角形abc中 内角abc的对边分别为abc 已知fx=跟号3/2,a=2,sinb=3/5,求三角形abc的面积在△ABC中∵f(A)=√3sin(2A+π/3)=√3/2∴sin(2A+π/3)=1/2∴2A+π/3=π/6+2kπ或5π/6+2kπ,k为整数即A=-π/12+kπ或π/4+kπ,k为整数又∵sinB=3/5,1/2